On Blast Pressure Analysis Due to a Partially Confined Explosion: III. Afterburning Effect

Author:

Edri I.1,Feldgun V.R.2,Karinski Y.S.2,Yankelevsky D.Z.3

Affiliation:

1. Israel Defense Forces, Combat Engineering Corps, Fortifications Branch

2. PhD, Senior Researcher, National Building Research Institute, Technion, Haifa, ISRAEL

3. Professor, Faculty of Civil & Environmental Engineering, National Building Research Institute, Technion, Haifa, ISRAEL

Abstract

This paper aims at extending our understanding with regard to some characteristics of an interior explosion within a room with limited venting. An interior explosion may be the result of an ammunition storage explosion, or an explosive charge as part of a terrorist action or a warhead explosion that follows its penetration into a closed space in a military action. Full scale experiments have been performed with a TNT charge detonated at the center of a single room sized space with rigid boundaries. The room has a limited size opening for venting at the ceiling. Numerical simulations of the problem have been performed using AUTODYN Ver. 12.1 and compared with the experimental measurements. Some deviations between the measured pressure and the predicted pressure motivated the present study in an attempt to study the effect of the additional energy released due to the burning of the detonation products reacting with the surrounding oxygen. The study that is described in this paper enhanced our understanding. Incorporation of this effect considerably improved the predictions. The present study clarified when, how and to what extent the afterburning should be introduced in the analysis.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Reference34 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3