VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

Author:

Murase Michio1,Utanohara Yoichi1,Kinoshita Ikuo1,Yanagi Chihiro1,Takata Takashi2,Yamaguchi Akira2,Tomiyama Akio3

Affiliation:

1. Institute of Nuclear Safety System, Incorporated, 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205, Japan

2. Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan

3. Kobe University, 1-1 Rokkodai, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan

Abstract

In order to evaluate flow patterns and CCFL (countercurrent flow limitation) characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid) method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3