Aeroelastic Control of a Wind Turbine Blade Using Microtabs Based on UA97W300-10 Airfoil

Author:

Li N.1,Balas M. J.2

Affiliation:

1. PhD student, Department of Electrical and Computer Engineering, Dept. 3295 1000 E. University Ave., Laramie, WY 82071, and AIAA Student Member

2. Corresponding author, Department Head and Nicholson Professor, Department of Electrical and Computer Engineering, Dept. 3295 1000 E. University Avenue, Laramie, WY 82071, and AIAA Fellow

Abstract

The unsteady flow over a rotating wind turbine blade is described by the Beddoes-Leishman dynamic stall model. Based on the asymmetric airfoil UA97W300-10, a wind turbine blade section with unsteady aerodynamic loads is modeled as an aeroelastic system for this vibration suppression study. Aeroelastic stability of the system is analyzed by open-loop tests to identify the flutter speed. With consideration of wind turbine operations, control strategies for flutter suppression are made separately in each operation region and implemented by a designed Adaptive Controller using microtab devices, which are positioned at the trailing edge of the airfoil with deployment at the maximum height of 5% of chord length. The control effects of the Adaptive Control and microtabs are investigated by closed-loop tests. The stability of the Adaptive Controller is proved using a new Adaptive Stability Theorem, which is also illustrated by examples.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3