A Study of the Ability of Meteodyn WT to Replicate Measurements around Steep Hills Using Wind Tunnel Data from the ‘RUSHIL’ Experiment

Author:

Manning Joel1,Hancock Philip2,Whiting Richard3

Affiliation:

1. Garrad Hassan and Partners Limited and University of Surrey

2. EnFlo Laboratory, University of Surrey

3. Garrad Hassan and Partners Limited

Abstract

Comparisons are made between Meteodyn WT (MWT) and wind tunnel measurements from the three RUSHIL test cases that represent hills of increasing steepness. The two steeper cases are of interest; in one the flow on the lee side is close to separation (Hill 5), for the other the flow has clearly separated (Hill 3). Although it is well known that WAsP 8.3 (WP) cannot predict separation, its predictions are included to represent the current industry standard. Both models agree well with mean wind speeds measured upstream of the Hill 5 crest. MWT gives significantly better but not good agreement upstream of the Hill 3 crest, where WP significantly over-predicts the speed-up. Downstream, MWT predictions are closer to measurements, but predict a smaller separation bubble on Hill 3, due to limitations of the turbulence model. A practical viewpoint requires improved modelling to have only a minimal impact on computational resource requirements.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3