Inverse Airfoil Design Method for Low-Speed Straight-Bladed Darrieus-Type VAWT Applications

Author:

Saeed F.1,Paraschivoiu I.2,Trifu O.2,Hess M.3,Gabrys C.3

Affiliation:

1. King Fahd University of Petroleum & Minerals, Mail Box 1637, Dhahran 31261, Saudi Arabia

2. Ecole Polytechnique de Montreal, Montreal, H3C 3A7, Canada

3. Mariah Power Inc., 748 South Meadows Parkway A-9, #329, Reno, Nevada 89521, USA

Abstract

The paper demonstrates the application of inverse airfoil design method to improve performance of a low-speed straight-bladed Darrieus-type VAWT. The study shows that an appropriate tailoring of the airfoil surface using the inverse airfoil design technique can help improve performance by eliminating undesirable flow field characteristics at very low Re, such as early transition due to presence of separation bubbles. The increase aerodynamic efficiency then translates into an improved aerodynamic performance of VAWTs specifically at very low chord Reynolds numbers. The study employs an interactive inverse airfoil design method (PROFOIL) that allows specification of velocity and boundary-layer characteristics over different segments of the airfoil subject to constraints on the geometry (closure) and the flow field (far field boundary). Additional constraints to satisfy some desirable features, such as pitching moment coefficient, thickness, camber, etc., along with a merit of performance of the VAWT, such as the required power output for a given tip-speed ratio, are specified as part of the inverse problem. Performance analyses of the airfoil and the VAWT are carried out with the aid of state-of-the-art analyses codes, XFOIL and CARDAAV, respectively. XFOIL is a panel method with a coupled boundary-layer scheme and is used to obtain the aerodynamic characteristics of resulting airfoil shapes. The final airfoil geometry is obtained through a multi-dimensional Newton iteration. A design example is presented to demonstrate the merits of the technique in improving performance of small VAWTs at low speeds. The main findings of the study suggests that the strength of the method lies in the inverse design methodology whereas its weaknesses is in reliably predicting aerodynamic characteristics of airfoils at low Reynolds numbers and high angles of attack. This weakness can, however, be overcome by assessing relative performance of the VAWT with the assumption that the changes in airfoil characteristics be kept small. The results indicate that a 10–15% increase in the relative performance of the VAWT can be achieved with this method.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3