Collective Pitch Control of Wind Turbines Using Stochastic Disturbance Accommodating Control

Author:

Girsang Irving P.1,Dhupia Jaspreet S.1

Affiliation:

1. Graduate Student, Assistant Professor, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

Fidelity of a plant's dynamic model is a concern in any controller design process. In this context, fidelity refers to which dynamics of the plant needs to be included in the control model and which dynamics can be left out or approximated. Studies on wind turbine control have shown that modelling error due to the unmodeled dynamics can lead to unstable closed-loop dynamics. This paper investigates the use of Kalman estimator to design the Stochastic Disturbance Accommodating Control (SDAC) scheme to stabilize the system in the presence of the unmodeled dynamics. Performance of the presented control scheme is investigated through simulations on two different wind turbine configurations under turbulent wind conditions with different mean wind speeds and turbulence intensities using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) aero-elastic tool. The generator speed regulation, drivetrain load, and control effort of the presented control scheme are compared with those of the baseline Gain Scheduled Proportional Integral (GSPI) controller. The results indicate better speed regulation and lower drivetrain load for the presented SDAC under the tested wind conditions.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind turbines dynamics loads alleviation: Overview of the active controls and the corresponding strategies;Ocean Engineering;2023-06

2. LQG control for hydrodynamic compensation on large floating wind turbines;Renewable Energy;2023-03

3. A Review of Power Co-Generation Technologies from Hybrid Offshore Wind and Wave Energy;Energies;2023-01-03

4. Wiener Filter based Predictive Control of Wind Turbine;2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST);2022-06-16

5. Discrete Wiener Filter Application in Wind Turbine Control;Proceedings of the Technical University of Sofia;2022-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3