Understanding Cavity Flows Using Proper Orthogonal Decomposition and Signal Processing

Author:

Lawson S.J.1,Barakos G.N.1,Simpson A.2

Affiliation:

1. CFD Laboratory, University of Liverpool, Liverpool L63 3GH, United Kingdom

2. EPCC, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

Abstract

Computational Fluid Dynamics (CFD) is increasingly being used to analyse complex flows. However, to perform a comprehensive analysis over a given time period, a large amount of data is provided and therefore a method for reducing the storage requirements is considered. The Proper Orthogonal Decomposition (POD) is a widely used technique that obtains low–dimensional approximate descriptions of high–dimensional processes. To demonstrate the potential for reduction in data storage, and the potential use of POD in CFD, the cavity flow case is used. This case is a challenge for CFD due to its unsteady nature and high frequency content. The POD modes were constructed using flow–field snapshots taken at regular intervals. Spatial POD modes for the cavity case showed that the modes came in pairs with a 90° phase shift. The lower modes represented the large dynamics of the shear layer and the higher modes the small scale turbulent structures. Reconstructions of the flow–fields showed that the very large dynamics could be represented with as few as 11 modes. However, approximately 101 modes (85% of the flow energy) were needed to approximate the frequency spectra below 1 kHz. Therfore a reduction of 70% in disk storage would be achieved over storing the complete set of flow–field snapshots produced by CFD.

Publisher

SAGE Publications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3