Affiliation:
1. Ecole Centrale Paris, Grande Voie des Vignes Applied Mathematics and Systems Laboratory 92295 Châtenay-Malabry Cedex, France
Abstract
Machine learning methods are widely studied and applied to predict building energy consumption. Since the factors associated with building energy behaviors are quite abundant and complex, this paper investigates for the first time how the selection of subsets of features influence the model performance when statistical learning method is adopted to derive the model. In this paper the optimal features are selected based on the feasibility of obtaining them and on the scores they provide under the evaluation of some filter methods. The selected subset is then evaluated on three data sets by support vector regression involving two kernel functions: radial basis function and polynomial function. Experimental results confirm the validity of the selected subset and show that the proposed feature selection method can guarantee the prediction accuracy and reduces the computational time for data analyzing.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献