Experimental Structural Dynamic Characterization of the Hawkmoth (Manduca Sexta) Forewing

Author:

Norris Aaron G.1,Palazotto Anthony N.2,Cobb Richard G.3

Affiliation:

1. Air Force Research Laboratory, Munitions Directorate

2. Distinguished Professor, Air Force Institute of Technology, Department of Aeronautics and Astronautics

3. Associate Professor, Air Force Institute of Technology, Department of Aeronautics and Astronautics

Abstract

While many bio-inspired flapping wing micro air vehicle wing designs continue to be conceived and studied in earnest, a general consensus of which physical attributes of the biological entity are important for flight is still at-large. It is proposed herein that the eigenstructure of the wing should figure prominently among rigorous engineering metrics for guiding flapping wing micro air vehicle wing designs at the scales of large insects. With virtually no compelling work done in this area to date, the method and results of system identification tests for the forewings of a representative sample of hawkmoth ( Manduca Sexta) are presented, revealing the underlying structural nature of this incredibly agile flyer's wings. Despite their inherent biological variability, these wings show very little variability in eigenstructure which may suggest it as a critical attribute for robust flight. Further supporting this hypothesis, the wings of four other insect species are briefly examined and show remarkable similarity with the hawkmoth wing's eigenstructure.

Publisher

SAGE Publications

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3