Effects of Pressure and Temperature on Gas Diffusion and Flow for Primary and Enhanced Coalbed Methane Recovery

Author:

Cai Yidong12,Pan Zhejun2,Liu Dameng1,Zheng Guiqiang1,Tang Shuheng1,Connell Luke D2,Yao Yanbin1,Zhou Yingfang3

Affiliation:

1. Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization, China University of Geosciences, Beijing 100083, China

2. CSIRO Earth Science and Resource Engineering, Private Bag 10, Clayton South, Victoria 3169, Australia

3. International Research Institute of Stavanger, Stavanger, P.O. Box 8046, 4068 Norway

Abstract

Due to the rapid increase of coalbed methane (CBM) exploration and development activities in China, gas adsorption and flow behavior for Chinese coals are of great interest for the industry and research community. How pressure and temperature affect the gas adsorption and flow on different rank coals are not only important for CBM recovery but also important for CO2 or N2 enhanced CBM recovery, since gases are often injected at a temperature different to the reservoir temperature. In this work, gas adsorption and permeability of three different rank Chinese coals are measured using CH4, N2 and CO2 at three temperatures, 20°C, 35°C and 50°C. Gas diffusivity and permeability with respect to gas species, pore pressure, effective stress and temperature are studied. The three coals are SQB-1 from Southern Qinshui Basin, JB-1 from Junggar Basin and OB-1 from Ordos Basin. Gas adsorption results show that both pressure and temperature have significant impact on adsorption behavior for SQB-1 and JB-1 using CH4. For higher rank coal SQB-1, adsorption isotherm tends to reach adsorption capacity quicker with respect to pressure. However, the maximum adsorption capacity is higher for the lower rank coal JB-1. Moreover, temperature has a stronger effect on reducing adsorption capacity for lower rank coal. Gas diffusivity results for OB-1 and JB-1 show that CO2 diffusivity is generally higher than that of CH4 and then N2. This could be related with their different kinetic diameters and their interaction with the coal. Both pressure and temperature have impact on gas diffusivity. In general, gas diffusivities increase with pressure and temperature. Permeability results show that it varies greatly with respect to coal rank with highest rank coal having the lowest permeability. Permeability is also strongly sensitive to effective stress and pore pressure. Temperature has a noticeable impact on permeability change. Permeability changes differently with temperature increase for the different rank coal samples studied. This may be attributed to the combined effect of coal strain change due to gas adsorption and thermal expansion. These results have significant implications for the design of enhanced CBM recovery and CO2 storage for different rank coals as injecting gas at different temperature and pressure would affect the CO2 injectivity and the CBM production rate.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3