Research on Heavy Oil Thermal Recovery by CO2 Steam Flooding with Help of Combination of Borehole-Surface Electric Potential and Cross-Borehole Electric Potential

Author:

Su Benyu1,Fujimitsu Yasuhiro2

Affiliation:

1. Laboratory of Geothermics, Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2. Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

With an increasing tendency towards more demand for energy resources, the supply of energy as a focus of global strategy is attracting more and more attention from the world. However, on the one hand, conventional hydrocarbon resources are decreasing gradually, and therefore it is definitely an urgent task to search for renewable and replaceable resources at the present time. On the other hand, it has been proved that the total reserves of heavy oil are already up to 1105×108 tons around the world, which means that exploring heavy oil can be a beneficial supplement for alleviating the shortage of oil and gas. Moreover, it is noteworthy that because the heavy oil can be exploited by heated CO2, collecting and consuming CO2 during the production process will help to relieve global warming. In this study, we take the feasibility of heavy oil recovery by CO2 steam into consideration only from the viewpoint of geophysics. In the process of research, with the help of borehole-surface electric potential and cross-borehole electric potential, the entire procedures from heating heavy oil reservoir and optimizing the location of well to deciding the layer of perforation are exhibited completely. In the course of calculation, potential distributions corresponding to a point source of current are acquired by solving the Poisson equation using a direct and explicit finite difference technique for a lower half-space with 3-D distribution of conductivity. As for computation of a large sparse matrix, the technique of nonzero bandwidth storage and the Incomplete Cholesky Conjugate Gradient method are adopted. The consequences prove that with the assistance of cross-borehole electric potential combining with borehole-surface electric potential, the project of heavy oil recovery by CO2 steam is feasible and effective.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3