Laboratory Study of Gas Permeability and Cleat Compressibility for CBM/ECBM in Chinese Coals

Author:

Zheng Guiqiang12,Pan Zhejun2,Chen Zhongwei3,Tang Shuheng1,Connell Luke D.2,Zhang Songhang1,Wang Bo4

Affiliation:

1. School of Energy and Resources, China University of Geosciences, Beijing 10083, P.R. China

2. CSIRO Earth Science and Resource Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia

3. School of Mechanical Engineering, The University of Western Australia, WA, 6009, Australia

4. School of Resource and Geosciences, China University of Mining and Technology, Xuzhou, 221116, P.R. China

Abstract

Coal permeability is regarded as one of the most critical parameters for the success of coalbed methane recovery. It is also a key parameter for enhanced coalbed methane recovery via CO2 and/or N2 injection. Coal permeability is sensitive to stress and cleat compressibility is often used to describe how sensitive the permeability change to stress change for coal reservoirs. Coalbed methane exploration and production activities and interest of enhanced coalbed methane recovery increased dramatically in China in recent years, however, how permeability and cleat compressibility change with respect to gas species, effective stress and pore pressure have not been well understood for Chinese coals, despite that they are the key parameters for primary and enhanced coalbed methane production. In this work, two dry Chinese bituminous coal samples from Qinshui Basin and Junggar Basin are studied. Four gases, including He, N2, CH4 and CO2 are used to study permeability behaviour with respect to different effective stresses, pore pressures, and temperatures. The effective stress is up to 5 MPa and pore pressure is up to 7 MPa. Permeability measurements are also carried out at highest pore pressures for each adsorbing gas, at three temperatures, 35, 40 and 45°C. The experimental results show that gas species, effective stress and pore pressure all have significant impact on permeability change for both coal samples. Moreover, the results demonstrate that cleat compressibility is strongly dependent on effective stress. More importantly, the results show that cleat compressibility is also strongly dependent on pore pressure. Cleat compressibility initially decreases with pore pressure increase then it increases slightly at higher pore pressures. However, temperature only has marginal impact on permeability and cleat compressibility change.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3