Review of the Punching Shear Behavior of Concrete Flat Slabs in Ambient and Elevated Temperature

Author:

Ghoreishi Mehrafarid,Bagchi Ashutosh,Sultan Mohamed

Abstract

There are a number of benefits associated with two-way concrete flat slab construction for office buildings, parking garages and apartments - for example, reduced formwork, prompt erection, flexibility of partitions, and minimal increase in story heights. However, concrete flat slabs could be quite vulnerable to punching shear failure in the event of a fire. The objective of the present article is to provide a state of the art review of the existing research and the issues associated with concrete flat slabs in fire and elevated temperature. There are a number of experimental and analytical studies on the punching shear behavior of concrete flat slabs in ambient conditions, available in the literature. Based on these studies, it is found that punching shear capacity in ambient condition is affected by many factors, which may not remain constant during a fire exposure. Only a limited number of studies on concrete flat slabs for punching shear failure in fire are available. This paper reviews the available experimental and analytical studies, standards and codes to address the research gap in estimating of punching shear strength of concrete flat slab-column connections without shear reinforcement.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fire Database and Cybersecurity;Digital Innovations in Architecture, Engineering and Construction;2024

2. A real-time forecast of tunnel fire based on numerical database and artificial intelligence;Building Simulation;2021-03-09

3. Novel shearhead reinforcement for slab-column connections subject to eccentric load and fire;Archives of Civil and Mechanical Engineering;2019-03

4. The effect of load-induced thermal strain on flat slab behaviour at elevated temperatures;Fire Safety Journal;2018-04

5. Numerical modelling of slab-column concrete connections at elevated temperatures;IABSE Symposium, Vancouver 2017: Engineering the Future;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3