Adsorption of Mixtures of Toxic Metal Ions Using Non-Viable Cells of Saccharomyces Cerevisiae

Author:

Amirnia Shahram1,Margaritis Argyrios1,Ray Madhumita B.1

Affiliation:

1. Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, N6A5B9 Canada

Abstract

The use of waste biomaterial for the adsorption of heavy metal ions is an economically appealing alternative to conventional metal ion removal methods. In the present work, S. cerevisiae biomass has been shown to be capable of the simultaneous removal of more than 98% of Pb(II) ions, 60% of Zn(II) ions and up to 55% of Cu(II) ions from aqueous solutions in the 10–50 mg/ℓ concentration range. Model equations describing the removal efficiency of each metal ion were determined using Response Surface Methodology (RSM) with respect to operating conditions such as pH, initial metal ion concentration and biomass dosage. Characterization of the metal ion–biomass interactions responsible for biosorption was studied employing zeta potential measurements, BET, FT-IR and EDX techniques; these indicated that the uptake of metal ions by non-living yeast was a surface adsorption phenomenon. The results proved the involvement of an ion-exchange mechanism between the adsorbing metal ions and the cell walls. In the presence of the complete range of metal ions studied, yeast cells were more selective towards Pb(II) ions.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3