Affiliation:
1. Department of Chemistry, Faculty of Science, Ankara University, 06100 Tandoğan, Ankara, Turkey
Abstract
The optimum conditions necessary for preparing a bleaching earth (BE) with maximum bleaching power (BP) towards soybean oil (SO) and cottonseed oil (CSO) were investigated. BEs were obtained by H2SO4 activation of a white calcium bentonite (CaB) sample from the Kütahya region of Turkey. After drying for 4 h at 105 °C, the CaB samples were activated by heating their acidic aqueous suspensions for 6 h at 97 °C, the acid content of the dry bentonite/acid mixture being varied in the 0–70% mass range. The respective specific surface area (S) and specific nanopore volume (V) of the BEs were determined from nitrogen adsorption/desorption data obtained at −196 °C. For natural CaB, the values of S and V were 44 m2/g and 0.11 cm3/g, respectively. These values attained a maximum of 135 m2/g and 0.30 cm3/g for the BE sample prepared employing 40% H2SO4 for acid activation. Interestingly, the maximum BP was not associated with the maximum S and V values. The optimum values for the percentage H2SO4, S and V for attaining the maximum BP were 20%, 100 m2/g and 0.17 cm3/g, respectively. The mean nanopore radius (r) of each BE was calculated using the corresponding S and V values. Nanopores with a mean radius in the range 3.5–5.5 nm, which was close to the diameter of the coloured pigment, were found to be mostly responsible for the BP towards SO and CSO. The results obtained in the present study indicate that the value of r was more effective than the S and V values of BEs in the bleaching of vegetable oils. Adsorption of a pigment onto a BE was found to depend not only on the physicochemical interaction between the pigment molecule and the BE surface, but also on the mean nanopore size.
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献