Climate Change and Food Production

Author:

Curtin T. R. C.1

Affiliation:

1. Member, Emeritus Faculty, Australian National University Tel. +612 62595644

Abstract

The availability of atmospheric carbon dioxide is the sine qua non for all plant growth and thence for all marine and terrestrial life forms. The purpose of this paper is to show that proposed reductions in anthropogenic emissions of carbon dioxide (CO2) to below the level of observed annual incremental biospheric absorption of those emissions would reduce the growth of the basic feedstock of all life forms. Agronomists have for long known and demonstrated in controlled experiments both in greenhouses and in field studies the dramatic impact of increases in its level on crop yields. These studies have all been local. The regression analysis here of historic data on global food production shows it may well be more dependent on increases in the availability of atmospheric carbon dioxide (henceforth written as [CO2]) than on changes in fertilizer consumption and global mean temperature (GMT). This implies that if the drastic reductions in total anthropogenic emissions of CO2 to be sought at Copenhagen (December 2009) are adopted and applied, they will, even if they aim at only a 60% reduction on the 2000 global level by 2050, bring emissions to below the incremental volume of their biospheric absorption. That could seriously imperil growth of global food production. We show how in its role as a fertilizer that raises global Net Primary Productivity (NPP), increases in [CO2] have a natural negative feedback mechanism that offsets a large proportion of growing emissions: more [CO2] causes more plant growth, but more plant growth takes up more CO2 thus limiting the further rise. This contrasts with the unproven positive feedback assumed in all models deployed by the IPCC whereby, allegedly, rising [CO2] will result in falling biospheric absorption and ever larger increases in [CO2]. We show there is no sign in the observations since 1958 of “saturation” of the capacity of the planet to continue absorbing more than half of all anthropogenic emissions of CO2, so there is no evidence for the IPCC's positive feedback. Biospheric absorption of increases in anthropogenic CO2 emissions would only have to increase from the average 57% of all anthropogenic emissions from 1958 to 2008 to 60% to achieve the likely Copenhagen 60% emissions reduction target. The rapid growth of absorption of total anthropogenic emissions to over 6% p.a. between 1997 and 2006 relative to total emissions growth at 2.6% p.a. over that period (Le Quéré 2008) confirms this manner of attaining the Copenhagen target is easily attainable—and helps to explain the growth of food production at rates in excess of global population growth. It also limited the growth rate of aggregate [CO2] between 1958 and 2008 to only 0.41% p.a. Our results show that with warming in the absence of growing carbon fertilization, agricultural production could be less by more than 10% by 2080 than at present (2007: Table 5.8). That means starvation for most of a global population likely then to be at least 50% larger than now.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3