Abstract
This paper introduces this thesis: The Sun-Earth system is electromagnetically, magneto-hydrodynamically and gravitationally coupled, dominated by significant non-linear, non-stationary interactions, which vary over time and throughout the three-dimensional structure of the Earth, its atmosphere and oceans. The essential elements of the Sun-Earth system are the solar dynamo, the heliosphere, the lunisolar tides, the Earth's inner and outer cores, mantle, crust, magnetosphere, oceans and atmosphere. The Sun-Earth system is non-ergodic (i.e. characterised by continuous change, complexity, disorder, improbability, spontaneity, connectivity and the unexpected). Climate dynamics, therefore, are non-ergodic, with highly variable climatological features at any one time. A theoretical framework for considering the role of the Sun in relation to the Earth's climate dynamics is outlined and ways in which the Sun affects climate reviewed. The forcing sources (independent variables) that influence climate processes (dependent variables) are analysed. This theoretical framework shows clearly the interaction effects between and amongst the two classes of variables. These seem to have the greatest effect on climate dynamics. Climate processes are interconnected and oscillating, yielding variable periodicities. Solar processes, especially when interacting, amplify or dampen these periodicities producing distinctive climatic cycles. As solar and climate processes are non-linear, non-stationary and non-ergodic, appropriate analytic methodologies are necessary to reveal satisfactorily solar/climate relationships.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献