Numerical Modelling of Carbonate Platforms and Reefs: Approaches and Opportunities

Author:

Dalmasso Hélène,Montaggioni L.F.1,Bosence Dan2,Floquet Marc1

Affiliation:

1. Centre de Sédimentologie-Paléontologie, U.M.R. C.N.R.S. 6019, Université de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France

2. Department of Geology, Royal Holloway University of London, Egham, UK

Abstract

This paper compares different computing procedures that have been utilized in simulating shallow-water carbonate platform development. Based on our geological knowledge we can usually give a rather accurate qualitative description of the mechanisms controlling geological phenomena. Further description requires the use of computer stratigraphic simulation models that allow quantitative evaluation and understanding of the complex interactions of sedimentary depositional carbonate systems. The roles of modelling include: (1) encouraging accuracy and precision in data collection and process interpretation (Watney et al., 1999); (2) providing a means to quantitatively test interpretations concerning the control of various mechanisms on producing sedimentary packages; (3) predicting or extrapolating results into areas of limited control; (4) gaining new insights regarding the interaction of parameters; (5) helping focus on future studies to resolve specific problems. This paper addresses two main questions, namely: (1) What are the advantages and disadvantages of various types of models? (2) How well do models perform? In this paper we compare and discuss the application of five numerical models: CARBONATE (Bosence and Waltham, 1990), FUZZIM (Nordlund, 1999), CARBPLAT (Bosscher, 1992), DYNACARB (Li et al., 1993), PHIL (Bowman, 1997) and SEDPAK (Kendall et al., 1991). The comparison, testing and evaluation of these models allow one to gain a better knowledge and understanding of controlling parameters of carbonate platform development, which are necessary for modelling. Evaluating numerical models, critically comparing results from models using different approaches, and pushing experimental tests to their limits, provide an effective vehicle to improve and develop new numerical models. A main feature of this paper is to closely compare the performance between two numerical models: a forward model (CARBONATE) and a fuzzy logic model (FUZZIM). These two models use common data sets, thereby permitting one to obtain similar results (Norlund, 1999). The geological model we use to test the validity of these two numerical models comes from a Holocene coral reef located at the island of Mauritius, Indian Ocean. A detailed description of the stratigraphy and general geological setting is given by Montaggioni and Faure (1997). The general stacking pattem and facies distribution obtained are similar to the Holocene reef section used as an example (Dalmasso, 2001). The results here include: (1) an enhanced understanding of similarities and differences between models and modelling philosophies; (2) critical evaluation of applications and assessment of how models have been utilized; and (3) improvements and refinements in techniques for generating and describing model inputs and outputs. The models have various drawbacks, most of which are due to the lack of knowledge about the systems we are trying to model, but also due to the incapability to make effective use of available knowledge. There is no perfect system for modelling carbonate platforms. Numerical modelling can help with both of these problems because it provides effective methods for making qualitative data available for numerical modelling and allows effective exploration of the behaviour of systems through experimentation, thereby increasing our understanding.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3