Thermodynamic Evaluation of First and Second Law Performance of Evaporative Cooling Schemes for Regenerative Gas Turbines

Author:

Bolatturk Ali1,Kanoglu Mehmet2,Coskun Ahmet1

Affiliation:

1. Department of Mechanical Engineering, Suleyman Demirel University, Isparta, Turkey

2. Department of Mechanical Engineering, University of Gaziantep, Gaziantep, Turkey

Abstract

In this study, effect of evaporative cooling on performance of regenerative gas turbine cycle is investigated considering simple regenerative cycle and regenerative cycle with intercooling and reheating. Evaporative cooling is applied to inlet air in simple regenerative cycle while it is applied to compressor inlet air and air between the compressor stages in reheat regenerative cycle. The first and second law performances of the cycles incorporating evaporative cooling are compared to the corresponding conventional cycles. Effects of the temperature and relative humidity of the ambient air, the turbine inlet temperature, and the pressure ratio on the net work, the thermal efficiency, and the second-law efficiency of the cycles are investigated. It appears that evaporative cooling increases thermal efficiency, net work, and optimum pressure ratio. With respect to simple regenerative cycle at a turbine inlet temperature of 1400 K and at a pressure ratio of 20, the thermal efficiency and the net work increase by 1.5 percent and 4 percent, respectively by inlet cooling in simple regenerative cycle while they increase by 18.3 percent and 12.2 percent, respectively by inlet cooling and intercooling in reheat regenerative cycle. With respect to conventional regenerative cycle with intercooling and reheating, evaporative cooling applied to inlet air and for intercooling provides essentially no increase in thermal and second-law efficiencies while it increases the net work 8.2 percent to 17.8 percent depending on the ambient conditions. Increasing turbine inlet temperature gives a linear increase in the optimum pressure ratio. As the ambient temperature increases and the relative humidity decreases, evaporative cooling becomes more effective in improving cycle performance.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3