Effects of Soil Plasticity on Seismic Performance of Mid-Rise Building Frames Resting on Soft Soils

Author:

Fatahi Behzad1,Tabatabaiefar S. Hamid Reza2

Affiliation:

1. Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia

2. School of Engineering and Information Technology, Faculty of Science and Technology, Federation University Australia, Australia

Abstract

In this study, the effects of Plasticity Index (PI) variation on the seismic response of mid-rise building frames resting on soft soil deposits are investigated. To achieve this goal, three structural models including 5, 10, and 15 storey buildings are simulated in conjunction with a clayey soil representing soil class Ee according to the classification of AS1170.4–2007 (Earthquake actions in Australia) and then varying the Plasticity Index. Structural sections of the selected frames were designed according to AS3600–2009 (Australian Standard for Concrete Structures) after undertaking dynamic analysis under the influence of four different earthquake ground motions. The frame sections are modelled and analysed, employing finite difference method adopting FLAC 2D software under two different boundary conditions: (i) fixed base (no Soil-Structure Interaction), and (ii) flexible base considering soil-structure interaction. Fully nonlinear dynamic analyses under the influence of different earthquake records are conducted and the results in terms of maximum lateral displacements and inter-storey drifts for the above mentioned boundary conditions are obtained, compared, and discussed. Base on the results of the numerical investigations, it becomes apparent that as the Plasticity Index of the subsoil increases, the base shears of mid-rise building frames resting on soft soil deposits increase, while the lateral deflections and corresponding inter-storey drifts decrease. It is concluded that reduction of the Plasticity Index could noticeably amplify the effects of soil-structure interaction on the seismic response of mid-rise building frames.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Reference43 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3