Finite Element Analysis of the Dynamic Response of Composite Floors Subjected to Walking Induced Vibrations

Author:

Behnia Arash1,Chai Hwa Kian1,Ranjbar Navid1,Behnia Nima2

Affiliation:

1. Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Civil Engineering, Islamic Azad University, Ghazvin Branch, Iran

Abstract

The applications of composite materials have been widely practiced in modern construction. Structural engineers are often urged to consider aesthetic values as well as the financial aspects in their work, which results in structures that have long span, lightweight and low natural frequencies. These structures exhibit excessive vibrations that cause major discomforts to the occupants. The purpose of this study is to establish a methodology using finite element analysis for assessing the dynamic responses of composite floors and determining the corresponding level of comfort. Linear elastic finite element analysis was conducted using more realistic load models with respect to the application of different geometries of concrete slab and fiber reinforced polymer materials. The composite floor investigated included FRP deck, FRP beams, and concrete slabs of various thicknesses. The resulting maximum peak accelerations indicated the need for more realistic load models to generate a time function including space, time and heel impact descriptions. The FRP deck or beam was satisfactory in terms of serviceability and comfort level. There were no significant differences between the results when fiber reinforced polymer materials or common concrete-steel composite floors were used.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration response of ultra-shallow floor beam composite floors;Proceedings of the Institution of Civil Engineers - Structures and Buildings;2024-08-01

2. Effect of location of load on shear lag behavior of bonded steel-concrete flexural members;STEEL COMPOS STRUCT;2021

3. Determining the Natural Frequency of Cantilever Beams Using ANN and Heuristic Search;Applied Artificial Intelligence;2018-03-16

4. Modal Mass of Floors Supported by Beams;Structures;2018-02

5. Human-induced vibration of steel–concrete composite floors;Proceedings of the Institution of Civil Engineers - Structures and Buildings;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3