Affiliation:
1. Structural Department, Hyundai Engineering Co. LTD, Seoul 158-723, Korea
2. School of Architecture and Civil Engineering, Daegu 702-701, Korea
Abstract
A refined plastic hinge analysis method, known as one of the most effective and practical second-order inelastic analysis methods for steel frames, is able to evaluate the ultimate structural behavior of steel frames by considering the geometric and material nonlinearities. However, an appropriate advanced nonlinear solution technique has to be incorporated to help structural engineers perform the rational design of steel frames by predicting the ultimate strength and post-failure structural behavior accurately. In this study, a refined plastic hinge analysis method, combined with a work-increment-control solution technique with an iterative procedure in incremental loading steps, was presented in order to overcome the shortcomings of the load-increment-control solution techniques employed in previous studies. In the work-increment-control solution technique of present study, one convergence criterion refining the problem of using two convergence criteria in the conventional increment/iteration procedure of work-increment-control solution techniques and an automatic incremental algorithm calculating the load factor and the magnitude of incremental work for next incremental loading step were employed. To verify the accuracy and appropriateness of the present approach, three representative plane steel frames employed in previous studies were analyzed, and the analysis results were compared with those by other approaches. The present approach, that evaluated fairly accurately the load-displacement relationships, ultimate loads, plastic hinge numbers and locations, and the post-critical responses up to the formation of collapse mechanism of the plane steel frames, proved to be acceptable.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献