Affiliation:
1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
2. Centre for Infrastructure Performance and Reliability, School of Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia
Abstract
The present paper develops a probabilistic model to calculate the structural reliability of typical reinforced grouted concrete block masonry walls designed to Chinese standards, loaded in horizontal shear. The statistical parameters for model error used for the structural reliability analysis are obtained from a database of wall test data from China. The effect of probability distribution of model error, the compressive strength for grouted concrete block masonry, live load type, load effect ratio, reinforcement ratio, wall length, wall size or strength discretization, vertical compressive load and ratio of shear span to depth were considered when calculating the structural reliability of reinforced masonry walls in shear. The structural reliability for reinforced concrete block masonry walls in shear is sensitive to the probability distribution of model error. The recommended lognormal distribution of model error based on test data provided a high reliability index, and when using Gamma and Gumbel distributions for typical structures the existing (design) safety levels were also found to exceed the target reliability of 3.7, whereas the safety levels were less than the target reliability using Normal and Weibull distributions of model error.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献