Modelling of Steel-Concrete Composite Structures in Fire Using OpenSees

Author:

Jiang Jian1,Usmani Asif2,Li Guo-Qiang3

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. School of Engineering, the University of Edinburgh, Edinburgh EH9 3JF, United Kingdom

3. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

This paper presents the extension of the structural analysis software framework OpenSees for modeling steel framed composite structures subjected to fire including the development of a geometrically nonlinear shell element. The new shell element is formed by a combination of membrane elements and Mindlin plate bending elements using a general total Lagrangian formulation. The MITC technique (Mixed Interpolation of Tensorial Components) is applied to alleviate shear locking problems and the addition of drilling degrees of freedom is included. A new thermal load class was created to define the temperature distribution through the thickness of the shell section. The two-dimensional OpenSees material, DruckerPrager, was modified to model the concrete in the composite deck slab at elevated temperature with temperature-dependent material properties according to the Eurocode 2. A three-dimensional finite element model of a composite structure was built in OpenSees, consisting of a flat reinforced concrete slab modeled by the developed shell element as well as concrete ribs and beams/columns modeled by three-dimensional beam elements. These components were connected by rigid link elements to model composite action. The performance of the developed model is verified and validated by a series of analytical solutions and experimental results respectively. Among these are: one-way bending of steel plates; fire tests on simply supported composite beams; and reinforced concrete slabs where membrane actions are investigated. Cardington restrained beam test and British Steel Corner test are also modeled. The reasonable agreement achieved between OpenSees predictions and experimental measurements shows the validity of the developed OpenSees extension to model composite structures in fire. The horizontal displacement of the column at floor level was modeled for the first time with reasonable agreement. This work is part of a wider project which, upon completion, will provide a user-friendly open-source computational platform for structural fire engineering analyses from fire dynamic simulation through to heat transfer analysis and mechanical analysis.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3