An Artificial Neural Network Based Method for Seismic Fragility Analysis of Highway Bridges

Author:

Pang Yutao1,Dang Xinzhi1,Yuan Wancheng1

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

Fragility functions have become widely adopted in the seismic risk assessment of highway bridges, or even a transportation network. The computational effort required for a fragility analysis of highway bridges using incremental dynamic analysis (IDA) can become excessive, far beyond the capability of modern computing systems, especially when dealing with the structural parameter uncertainty in generating the fragility functions. In this paper, an artificial neural network (ANN) based prediction scheme for the generation of analytical fragility curves for highway bridges is presented. And the extremely time-consuming process in traditional analytical fragility methodologies is replaced by properly trained ANNs. The implementation of ANNs is focused on the simulation of median value and standard deviation of IDA curves at a given intensity level. The uniform design method (UDM) is proposed for selecting the training datasets for establishing a well-trained ANN model. It is observed that the proposed procedure can provides accurate estimates of fragility curves with relative short time compared to conventional procedures. The sensitivity study also reveals importance of material or geometric uncertainty in developing fragility curves of highway bridges.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3