Incorporating Residual Strains in the Flexural Rigidity of RC Members with Varying Degrees of Prestress and Cracking

Author:

Knight D.1,Visintin P.1,Oehlers D.J.1,Jumaat M.Z.2

Affiliation:

1. School of Civil, Environmental and Mining Engineering, The University of Adelaide, South Australia 5005, Australia

2. Department of Civil Engineering, University of Malaya, Kuala Lumpur, Malaysia

Abstract

The deformation of reinforced concrete columns and beams is controlled by the variation of the flexural rigidity (EI) both along the member and with applied loads and time. Currently, the moment-curvature (M/χ) approach is used to quantify EI. Prior to cracking, the M/χ approach provides a pure mechanics based solution for EI; that is, the only components of the model that have to be determined empirically are the material stress-strain relationships. However after cracking, the M/χ approach has to be semi-empirical, that is EI has to be determined empirically because the M/χ approach cannot simulate the mechanics of tension-stiffening. An alternative approach for quantifying EI using a moment-rotation (M/θ) approach is described in this paper. It is shown that the M/θ approach gives exactly the same results as the M/χ approach prior to cracking but after cracking has an advantage over the M/χ approach in that it can quantify the mechanics of tension-stiffening, that is allow for bond slip and its effect on crack spacing and crack widths. This paper deals with the mechanics of incorporating creep, shrinkage, prestress, relaxation and thermal gradients (broadly referred to as residual strains) on the flexural rigidity of RC beams and columns at all levels of loading prior to concrete softening.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3