Linear and Nonlinear Seismic Structural Impact Response Spectral Analyses

Author:

Chase J. Geoffrey1,Boyer Florent2,Rodgers Geoffrey W.1,Labrosse Gregoire3,MacRae Gregory A.4

Affiliation:

1. Dept of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

2. ENSMA, Futuroscope Chasseneuil, France

3. ISTIL, Lyon, France

4. Dept of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

Abstract

This paper describes analyses of single-degree-of-freedom structures with different spacing, coefficients of restitution, structural periods, and both linear and nonlinear cases, to a suite of earthquake records with equivalent probability of occurrence. A methodology to relate the probability of impact, and the probability of different levels of percentage peak, spectral displacement increase over a suite of events with equivalent probability of occurrence. Thus, both analyses provide a design risk assessed for these different design parameters, which provides a framework for risk analysis and design that is developed and illustrated. It is shown that smaller gaps between structures and greater difference between structural periods independently lead to greater probabilities of impact. Also, smaller gaps, greater coefficients of restitution and structural linearity (i.e. less yielding) lead to increases of structural displacement as a result of impact. The overall results provide significant insight into the design parameters and their sensitivity around structural impact, and provide these results within a risk based framework amenable to designers and the profession. The approach developed may be generalized to other cases with more degrees of freedom, different masses or damping values.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3