Application of Structural Health Monitoring System for Reliable Seismic Performance Evaluation of Infrastructures

Author:

Yi Jin-Hak1,Kim Dookie2,Go Sunghyuk2,Kim Jeong-Tae3,Park Jae-Hyung3,Feng Maria Q.4,Kang Keum-Seok5

Affiliation:

1. Coastal Development and Ocean Energy Research Department, Korea Ocean Research and Development Institute, Gyeonggi 426-744, Korea

2. Department of Civil and Environmental Engineering, Kunsan National University, Jeonbuk, Korea

3. Department of Ocean Engineering, Pukyong National University, Busan, Korea

4. Department of Civil and Environmental Engineering, Univ. of California, Irvine, California, USA

5. Technology Commercialization Office, Korea Electric Power Research Institute, Daejeon, Korea

Abstract

In this study, the useful application of an instrumented structural health monitoring (SHM) system is proposed for the reliable seismic performance evaluation based on measured response data. A seismic fragility is chosen as a key index for probabilistic seismic performance assessment on an infrastructure. The seismic performance evaluation procedure consists of the following five main steps; (1) measuring ambient vibration of a bridge under general traveling vehicles; (2) identifying modal parameters including natural frequencies and mode shapes from the measured acceleration data by output-only modal identification method; (3) updating linear structural parameters in a preliminary finite element (FE) model using the identified modal parameters; (4) analyzing nonlinear response time histories of the structure using nonlinear seismic analysis program; and finally (5) evaluating the probabilistic seismic performance in terms of seismic fragility. In the present study, the seismic fragility curves are represented by a log-normal distribution function. An instrumented highway bridge is utilized to demonstrate the proposed evaluation procedure and it is found that the seismic fragility of a highway bridge can be reliably evaluated by combining the modal information obtained from the instrumented SHM system and FE model updating by using the information.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3