Subcritical and Supercritical Droplet Evaporation within a Zero Gravity Environment; On the Discrepancies between Theoretical and Experimental Results

Author:

Zhang Hongtao1,Raghavan Vasudevan1,Gogos George1

Affiliation:

1. N104 Scott Engineering Center, Department of Mechanical Engineering University of Nebraska-Lincoln, Lincoln, NE 68588-0656

Abstract

A comprehensive axisymmetric numerical model has been developed to study high pressure droplet evaporation. In this model, high pressure transient effects, variable thermo-physical properties and inert species solubility in the liquid-phase are considered. First, the axisymmetric model has been utilized to explain the discrepancy between theoretical and experimental results on microgravity droplet evaporation that has been reported in the literature [J.R. Yang and S.C. Wong, Ref. 35]. In addition, this effort led to a thorough validation of the model against the most extensive microgravity experimental data available in the literature on droplet evaporation. Second, the validated model has been utilized to investigate spherically symmetric droplet evaporation for a wide range of ambient pressures and temperatures. The predictions show that the average droplet evaporation constant decreases with ambient pressure at sub-critical ambient temperatures, becomes insensitive to pressure at ambient temperatures around the critical temperature of the fuel and presents a local maximum while increasing with the ambient pressure at super-critical ambient temperatures.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3