Aerial Robotic Construction towards a New Field of Architectural Research

Author:

Willmann Jan1,Augugliaro Federico1,Cadalbert Thomas1,D'Andrea Raffaello1,Gramazio Fabio1,Kohler Matthias1

Affiliation:

1. Institution: ETH Zurich, Professorship for Architecture and Digital Fabrication, Wolfgang-Pauli-Strasse 15, 8093 Zurich, Switzerland, and ETH Zurich, Institute for Dynamic Systems and Control, Sonneggstrasse 3, 8092 Zurich, Switzerland

Abstract

This paper takes a first step in characterizing a novel field of architectural research - aerial robotic construction (ARC) - where aerial robotics is used not only for construction, but as a guiding principle in the design and fabrication process. Featuring autonomous flying vehicles that lift small building elements and position them according to a precise digital blueprint, ARC offers a comprehensive new approach to architecture research and technology. Developed by the research groups of Gramazio & Kohler and Raffaello D'Andrea at ETH Zurich, ARC offers unique advantages over traditional approaches to building: it does not require scaffolding, it is easily scalable, and it offers digital integration and informational oversight across the entire design and building process. This paper considers 1) research parameters for the individual components of ARC (such as module design, connection methodologies, vehicle cooperation, and construction sequencing/synchronization), and 2) the architectural implications of integrating these discrete components into a systemic, unifying process at the earliest stages of design. Fidelity between the design concept and the full-scale construction is of particular concern.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Building and Construction

Reference24 articles.

1. Harries K., The Ethical Function of Architecture, MIT Press, Cambridge/MA., 276–277.

2. Pascoe D., Airspaces, Reaktion Books, London, 2001, 113–153.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3