Design Rationalization of Irregular Cellular Structures

Author:

Schlueter Arno1,Bonwetsch Tobias1

Affiliation:

1. C/o Institute of Building Technologies, Department of Architecture, ETH Zürich, Wolfgang-Pauli Str. 15, 8093 Zürich, Switzerland

Abstract

Complex geometries found in nature are increasingly used as images and analogies for the creation of form and space in architectural design. To be able to construct the resulting complex building forms, strategies to handle the resulting production requirements are necessary. In the example of a design project for a Japanese noodle bar, a strategy for the realization of an irregular cellular spatial structure is presented. In order to represent its complex geometry, building principles relating to foam are applied to transform and optimize the design, which is based on hexagonal, cellular compartments defining the different interior spaces. The principles are converted into software code and implemented into a digital design toolbox to be used within a 3D-modelling environment. Utilizing the tools within the redesign process made a rationalization of the cellular structures possible without sacrificing the desired visual irregularity. The toolbox also enables the extraction of the cell geometry to support the generation of production documents. The result is the dramatic reduction of production effort to realize the complex cellular structures by keeping a maximum of design flexibility and desired visual appearance.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric construction of auxetic metamaterials;Computer Graphics Forum;2021-05

2. Rationalization methods in computer aided fabrication: A critical review;Automation in Construction;2018-06

3. Embedded Rationality: A Unified Simulation Framework for Interactive Form Finding;International Journal of Architectural Computing;2010-12

4. Towards Morphogenesis in Architecture;International Journal of Architectural Computing;2009-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3