Interrupted time series segmented regression analysis for detecting waterborne disease outbreaks by syndromic surveillance

Author:

Yuen Aidan,Pourmarzi Davoud,Sarkis Suzie,Luisetto Carmela,Khatri Kamal,Bone Angie,Black Jim

Abstract

Introduction Pathogens can enter the drinking water supply and cause gastroenteritis outbreaks. Such events can affect many people in a short time, making them a high risk for public health. In Australia, the Victoria State Government Department of Health is deploying a syndromic surveillance system for drinking water contamination events. We assessed the utility of segmented regression models for detecting such events and determined the number of excess presentations needed for such methods to signal a detection. Methods The study involved an interrupted time series study of a past lapse in water treatment. The baseline period comprised the four weeks before the minimum incubation period of suspected pathogens, set at two days post-event. The surveillance period comprised the week after. We used segmented linear regression to compare the count of gastroenteritis presentations to public hospital emergency departments (EDs) between the surveillance and baseline periods. We then simulated events resulting in varying excess presentations. These were superimposed onto the ED data over fifty different dates across 2020. Using the same regression, we calculated the detection probability at p < 0.05 for each outbreak size. Results In the retrospective analysis, there was strong evidence for an increase in presentations shortly after the event. In the simulations, with no excess presentations (i.e., with the ED data as is) the models signalled 8% probability of detection. The models returned 50% probability of detection with 28 excess presentations and 100% probability of detection with 78 excess presentations. Conclusions The transient increase in presentations after the event may be attributed to microbiological hazards or increased health-seeking behaviour following the issuing of boil water advisories. The simulations demonstrated the ability for segmented regressions to signal a detection, even without a large excess in presentations. The approach also demonstrated high specificity and should be considered for informing Victoria’s syndromic surveillance system.

Publisher

Australian Government Department of Health and Aged Care

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3