Author:
Vaughan James,Faghih Imani Ahmadreza,Yusuf Bilal,Miller Eric J.
Abstract
This study proposes a framework to impute travel mode for trips identified from cellphone traces by developing a deep neural network model. In our framework, we use the trips from a home interview survey and transit smartcard data, for which the travel mode is known, to create a set of artificial pseudo-cellphone traces. The generated artificial pseudo-cellphone traces with known mode are then used to train a deep neural network classifier. We further apply the trained model to infer travel modes for the cellphone traces from cellular network data. The empirical case study region is Montevideo, Uruguay, where high-quality data are available for all three types of data used in the analysis: a large dataset of cellphone traces, a large dataset of public transit smartcard transactions, and a small household travel survey. The results can be used to create an enhanced representation of origin-destination trip-making in the region by time of day and travel mode.
Subject
Urban Studies,Transportation,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献