What is really uncovered by mixing different model structures: contrasts between latent class and model averaging

Author:

Hancock Thomas O,Hess Stephane

Abstract

Latent class models have long been a tool for capturing heterogeneity across decisionmakers in the sensitivities to individual attributes. More recently, there has been increased interest in using these models to capture heterogeneity in actual behavioural processes, such as information/attribute processing and decision rules. This often leads to substantial improvement in model fit and the apparent finding of large clusters of individuals making choices in ways that are substantially different from those used by others. Such findings have however not been without criticism given the potential risk of confounding with other more modelspecific heterogeneity. In this paper, we consider an alternative approach for exploring the issue by contrasting the findings obtained with model averaging, which combines the results from a number of separately (rather than simultaneously) estimated models. We demonstrate that model averaging can accurately recover the different data generation processes used to create a number of simulated datasets and thus beused to infer likely sources of heterogeneity. We then use this new diagnostic tool on two stated choice case studies. For the first, we find that the use of model averaging leads to significant reductions in the amount of heterogeneity of the type analysts have sought to uncover with latent class structures of late. For the second, results from model averaging show clear evidence of the existence of both taste and decision rule heterogeneity. Overall, however, our results suggest that heterogeneity in the sensitivities to individual attributes rather than the behavioural process per se could be the key factor behind the improvements gained through the adoption of latent class models for heterogeneity in behavioural processes.

Publisher

TU Delft OPEN Publishing

Subject

Urban Studies,Transportation,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3