Instructive Role of the Microenvironment in Preventing Renal Fibrosis

Author:

Matsumoto Kei12345,Xavier Sandhya12345,Chen Jun12345,Kida Yujiro12345,Lipphardt Mark12345,Ikeda Reina12345,Gevertz Annie12345,Caviris Mario12345,Hatzopoulos Antonis K.6,Kalajzic Ivo7,Dutton James8,Ratliff Brian B.12345,Zhao Hong12345,Darzynkiewicz Zbygniew12345,Rose-John Stefan9,Goligorsky Michael S.1234

Affiliation:

1. a Department of Medicine, New York Medical College, Valhalla, New York, USA

2. b Department of Pharmacology, New York Medical College, Valhalla, New York, USA

3. c Department of Physiology, New York Medical College, Valhalla, New York, USA

4. d Department of Pathology, New York Medical College, Valhalla, New York, USA

5. e Renal Research Institute, New York Medical College, Valhalla, New York, USA

6. h Vanderbilt University, Nashville, Tennessee, USA

7. i University of Connecticut Health Center, Farmington, Connecticut, USA

8. j Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA

9. k Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany

Abstract

Abstract Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial-mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor-β1 (TGF-β1)-activated fibroblasts with EPC extract prevented expression of α-smooth muscle actin (α-SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis—unilateral ureteral obstruction and chronic phase of folic acid-induced nephropathy—subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α-SMA-positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast-to-myofibroblast transition of TGF-β1-activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor-independent ligand for the gp130/STAT3 pathway, hyper-interleukin-6 (hyper-IL-6), not only induced a robust downstream increase in pluripotency factors Nanog and c-Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast-to-myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF-β1-induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor-independent gp130/STAT3 agonist, hyper-IL-6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper-IL-6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3