Short-Term Spheroid Formation Enhances the Regenerative Capacity of Adipose-Derived Stem Cells by Promoting Stemness, Angiogenesis, and Chemotaxis

Author:

Cheng Nai-Chen123,Chen Szu-Yu1,Li Jia-Rong2,Young Tai-Horng23

Affiliation:

1. Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

2. Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan

3. Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan

Abstract

Abstract Adipose-derived stem cells (ASCs) represent an important source of mesenchymal stem cells for clinical application. During in vitro culture, ASCs quickly lose the expression of transcription factors associated with pluripotency and self-renewal (Sox-2, Oct-4, and Nanog) and CXCR4, the key receptor responsible for stem cell homing. To enhance their therapeutic potential despite in vitro passages, we examined whether ASCs exhibit superior regenerative capacity by expanding them in monolayers following short-term spheroid formation. Spheroid-derived ASCs retained the expression pattern of cell surface markers and adipogenic/osteogenic differentiation capabilities of ASCs constantly cultured in monolayers. However, spheroid-derived ASCs exhibited higher expansion efficiency with less senescence. Moreover, spheroid-derived ASCs expressed significantly higher levels of pluripotency markers, CXCR4, and angiogenic growth factors. Enhanced in vitro migration, associated with the increased expression of matrix metalloproteinases (MMP-9 and MMP-13), was also observed in spheroid-derived ASCs. The enhanced migration and MMP expression could be inhibited by a CXCR4-specific peptide antagonist, AMD3100. Using a murine model with healing-impaired cutaneous wounds, we observed faster healing and enhanced angiogenesis in the wounds treated with spheroid-derived ASCs. Significantly more cellular engraftment of spheroid-derived ASCs in the cutaneous wound tissue was also noted, with evidence of ASC differentiation toward endothelial and epidermal lineages. These findings suggest that short-term spheroid formation of ASCs before monolayer culture enhances their properties of stemness, angiogenesis, and chemotaxis and thereby increases their regenerative potential for therapeutic use.

Funder

National Science Council, Taiwan

National Taiwan University Hospital

E-Da Hospital-National Taiwan University Hospital Joint Research Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3