Short Laminin Peptide for Improved Neural Stem Cell Growth

Author:

Li Xiaowei1,Liu Xiaoyan1,Josey Benjamin2,Chou C. James2,Tan Yu1,Zhang Ning134,Wen Xuejun1356

Affiliation:

1. Clemson-Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA

2. Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA

3. Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA

4. Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA

5. Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA

6. Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Tongji University, Shanghai, China

Abstract

Abstract Human neural stem/progenitor cells (hNSCs) are very difficult to culture and require human or animal source extracellular matrix molecules, such as laminin or collagen type IV, to support attachment and to regulate their survival and proliferation. These extracellular matrix molecules are difficult to purify from human or animal tissues, have high batch-to-batch variability, and may cause an immune response if used in clinical applications. Although several laminin- and collagen IV-derived peptides are commercially available, they do not support long-term hNSC attachment and growth. To solve this problem, we developed a novel peptide sequence with only 12 amino acids based on the Ile-Lys-Val-Ala-Val, or IKVAV, sequence: Ac-Cys-Cys-Arg-Arg-Ile-Lys-Val-Ala-Val-Trp-Leu-Cys. This short peptide sequence, similar to tissue-derived full laminin molecules, supported hNSCs to attach and proliferate to confluence for continuous passage and subculture. This short peptide also directed hNSCs to differentiate into neurons. When conjugated to poly(ethylene glycol) hydrogels, this short peptide benefited hNSC attachment and proliferation on the surface of hydrogels and promoted cell migration inside the hydrogels with maximum enhancement at a peptide density of 10 μM. This novel short peptide shows great promise in artificial niche development for supporting hNSC culture in vitro and in vivo and for promoting hNSC transplantation in future clinical therapy.

Funder

U.S. National Science Foundation Faculty Early Career Development

Ministry of Science and Technology of China

U.S. Department of Defense

National Natural Science Foundation of China

U.S. National Institutes of Health National Institute of Neurological Disorders and Stroke

American Heart Association

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3