Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke

Author:

Eckert Auston1,Huang Lei1,Gonzalez Rodolfo2,Kim Hye-Sun3,Hamblin Milton H.1,Lee Jean-Pyo12

Affiliation:

1. Center for Stem Cell Research and Regenerative Medicine, Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA

2. Sanford-Burnham Institute for Medical Research, Neuroscience, Aging and Stem Cell Research, La Jolla, California, USA

3. Seoul National University, College of Medicine, Department of Pharmacology, Seoul, Republic of Korea

Abstract

Abstract Present therapies for stroke rest with tissue plasminogen activator (tPA), the sole licensed antithrombotic on the market; however, tPA's effectiveness is limited in that the drug not only must be administered less than 3–5 hours after stroke but often exacerbates blood-brain barrier (BBB) leakage and increases hemorrhagic incidence. A potentially promising therapy for stroke is transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs). To date, the effects of iPSCs on injuries that take place during early stage ischemic stroke have not been well studied. Consequently, we engrafted iPSC-NSCs into the ipsilesional hippocampus, a natural niche of NSCs, at 24 hours after stroke (prior to secondary BBB opening and when inflammatory signature is abundant). At 48 hours after stroke (24 hours after transplant), hiPSC-NSCs had migrated to the stroke lesion and quickly improved neurological function. Transplanted mice showed reduced expression of proinflammatory factors (tumor necrosis factor-α, interleukin 6 [IL-6], IL-1β, monocyte chemotactic protein 1, macrophage inflammatory protein 1α), microglial activation, and adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1) and attenuated BBB damage. We are the first to report that engrafted hiPSC-NSCs rapidly improved neurological function (less than 24 hours after transplant). Rapid hiPSC-NSC therapeutic activity is mainly due to a bystander effect that elicits reduced inflammation and BBB damage. Significance Clinically, cerebral vessel occlusion is rarely permanent because of spontaneous or thrombolytic therapy-mediated reperfusion. These results have clinical implications indicating a much extended therapeutic window for transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs; 24 hours after stroke as opposed to the 5-hour window with tissue plasminogen activator [tPA]). In addition, there is potential for a synergistic effect by combining hiPSC-NSC transplantation with tPA to attenuate stroke's adverse effects.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3