Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

Author:

Gorin Caroline12,Rochefort Gael Y.1,Bascetin Rumeyza345,Ying Hanru345,Lesieur Julie1,Sadoine Jérémy1,Beckouche Nathan345,Berndt Sarah345,Novais Anita1,Lesage Matthieu345,Hosten Benoit6,Vercellino Laetitia7,Merlet Pascal7,Le-Denmat Dominique1,Marchiol Carmen8,Letourneur Didier9,Nicoletti Antonino9,Vital Sibylle Opsahl12,Poliard Anne1,Salmon Benjamin12,Muller Laurent345,Chaussain Catherine12,Germain Stéphane345

Affiliation:

1. EA 2496 Pathologies, Imagerie et Biothérapies orofaciales et Plateforme Imagerie du Vivant, Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France

2. Assistance Publique des Hôpitaux de Paris (AP-HP) Département d'Odontologie, Hôpitaux Universitaires PNVS, Paris, France

3. Center for Interdisciplinary Research in Biology, Collège de France, Paris, France

4. Inserm U1050, Paris, France

5. CNRS UMRS 7241, Paris, France

6. INSERM UMR-S1144, Université Paris Descartes-Paris Diderot Sorbonne Paris Cité, AP-HP, Hôpital St. Louis, Unité Claude Kellershohn, Paris, France

7. Université Paris Diderot, AP-HP, Hôpital St. Louis, Unité Claude Kellershohn, Paris, France

8. Institut Cochin, Plateforme Imagerie du vivant, Université Paris Descartes Sorbonne Paris Cité, Paris, France

9. INSERM U1148, Laboratory of Vascular Translational Science, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, and Département Hospitalo-Universitaire Fibrosis, Inflammation, and Remodeling, Paris, France

Abstract

Abstract Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more efficient than hypoxia at increasing dental pulp stem cells derived from deciduous teeth (SHED)-induced vascularization compared with nonprimed controls. Together, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both hepatocyte growth factor and vascular endothelial growth factor.

Funder

University Paris Descartes, Fondation de la Recherche Médicale

Plateforme d'imagerie du Vivant Paris Descartes

Fondation des Gueules Cassées

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3