Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

Author:

Jiang Yangzi123,Cai Youzhi45,Zhang Wei1,Yin Zi1,Hu Changchang1,Tong Tong1,Lu Ping1,Zhang Shufang125,Neculai Dante1,Tuan Rocky S.3,Ouyang Hong Wei12456

Affiliation:

1. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

2. Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

3. Center for Cellular Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

4. Department of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

5. Chinese Orthopaedic Regenerative Medicine Group, Hangzhou, People's Republic of China

6. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

Abstract

Abstract Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair.

Funder

National Key Scientific Program

National High Technology Research and Development Program of China

National Natural Science Foundation of China

Key Scientific and Technological Innovation Team of Zhejiang Province

Zhejiang Provincial

Commonwealth of Pennsylvania Department of Health

U.S. Department of Defense

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3