Rho Kinase Inhibition Is Essential During In Vitro Neurogenesis and Promotes Phenotypic Rescue of Human Induced Pluripotent Stem Cell-Derived Neurons With Oligophrenin-1 Loss of Function

Author:

Compagnucci Claudia1,Barresi Sabina1,Petrini Stefania2,Billuart Pierre3,Piccini Giorgia4,Chiurazzi Pietro5,Alfieri Paolo4,Bertini Enrico1,Zanni Ginevra1

Affiliation:

1. Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy

2. Research Laboratories, Confocal Microscopy Core Facility, and Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy

3. Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Paris, France

4. Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy

5. Institute of Human and Medical Genetics, Catholic University, Rome, Italy

Abstract

Abstract Rho-GTPases have relevant functions in various aspects of neuronal development, such as differentiation, migration, and synaptogenesis. Loss of function of the oligophrenin-1 gene (OPHN1) causes X-linked intellectual disability with cerebellar hypoplasia and leads to hyperactivation of the rho kinase (ROCK) pathway. ROCK mainly acts through phosphorylation of the myosin phosphatase targeting subunit 1, triggering actin-myosin contractility. We show that during in vitro neurogenesis, ROCK activity decreases from day 10 until terminal differentiation, whereas in OPHN1-deficient human induced pluripotent stem cells (h-iPSCs), the levels of ROCK are elevated throughout differentiation. ROCK inhibition favors neuronal-like appearance of h-iPSCs, in parallel with transcriptional upregulation of nuclear receptor NR4A1, which is known to induce neurite outgrowth. This study analyzed the morphological, biochemical, and functional features of OPHN1-deficient h-iPSCs and their rescue by treatment with the ROCK inhibitor fasudil, shedding light on the relevance of the ROCK pathway during neuronal differentiation and providing a neuronal model for human OPHN1 syndrome and its treatment. Significance The analysis of the levels of rho kinase (ROCK) activity at different stages of in vitro neurogenesis of human induced pluripotent stem cells reveals that ROCK activity decreases progressively in parallel with the appearance of neuronal-like morphology and upregulation of nuclear receptor NR4A1. These results shed light on the role of the ROCK pathway during early stages of human neurogenesis and provide a neuronal stem cell-based model for the treatment of OPHN1 syndrome and other neurological disorders due to ROCK dysfunction.

Funder

Pierfranco e Luisa Mariani Foundation

Italian Telethon

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3