Neural Progenitor-Like Cells Induced from Human Gingiva-Derived Mesenchymal Stem Cells Regulate Myelination of Schwann Cells in Rat Sciatic Nerve Regeneration

Author:

Zhang Qunzhou1,Nguyen Phuong2,Xu Qilin1,Park Wonse1,Lee Sumin1,Furuhashi Akihiro1,Le Anh D.13

Affiliation:

1. a Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA

2. b Division of Plastic and Reconstructive Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

3. c Department of Oral and Maxillofacial Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

Abstract Regeneration of peripheral nerve injury remains a major clinical challenge. Recently, mesenchymal stem cells (MSCs) have been considered as potential candidates for peripheral nerve regeneration; however, the underlying mechanisms remain elusive. Here, we show that human gingiva-derived MSCs (GMSCs) could be directly induced into multipotent NPCs (iNPCs) under minimally manipulated conditions without the introduction of exogenous genes. Using a crush-injury model of rat sciatic nerve, we demonstrate that GMSCs transplanted to the injury site could differentiate into neuronal cells, whereas iNPCs could differentiate into both neuronal and Schwann cells. After crush injury, iNPCs, compared with GMSCs, displayed superior therapeutic effects on axonal regeneration at both the injury site and the distal segment of the injured sciatic nerve. Mechanistically, transplantation of GMSCs, especially iNPCs, significantly attenuated injury-triggered increase in the expression of c-Jun, a transcription factor that functions as a major negative regulator of myelination and plays a central role in dedifferentiation/reprogramming of Schwann cells into a progenitor-like state. Meanwhile, our results also demonstrate that transplantation of GMSCs and iNPCs consistently increased the expression of Krox-20/EGR2, a transcription factor that governs the expression of myelin proteins and facilitates myelination. Altogether, our findings suggest that transplantation of GMSCs and iNPCs promotes peripheral nerve repair/regeneration, possibly by promoting remyelination of Schwann cells mediated via the regulation of the antagonistic myelination regulators, c-Jun and Krox-20/EGR2.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3