Concise Review: Macrophages: Versatile Gatekeepers During Pancreatic β-Cell Development, Injury, and Regeneration

Author:

Van Gassen Naomi1,Staels Willem123,Van Overmeire Eva45,De Groef Sofie1,Sojoodi Mozhdeh1,Heremans Yves1,Leuckx Gunter1,Van de Casteele Mark1,Van Ginderachter Jo A.45,Heimberg Harry1,De Leu Nico16

Affiliation:

1. Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium

2. Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium

3. Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium

4. Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium

5. Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium

6. Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium

Abstract

Abstract Macrophages are classically considered detrimental for pancreatic β-cell survival and function, thereby contributing to β-cell failure in both type 1 (T1D) and 2 (T2D) diabetes mellitus. In addition, adipose tissue macrophages negatively influence peripheral insulin signaling and promote obesity-induced insulin resistance in T2D. In contrast, recent data unexpectedly uncovered that macrophages are not only able to protect β cells during pancreatitis but also to orchestrate β-cell proliferation and regeneration after β-cell injury. Moreover, by altering their activation state, macrophages are able to improve insulin resistance in murine models of T2D. This review will elaborate on current insights in macrophage heterogeneity and on the evolving role of pancreas macrophages during organogenesis, tissue injury, and repair. Additional identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for both T1D and T2D. Significance Diabetes mellitus is a pandemic disease, characterized by severe acute and chronic complications. Macrophages have long been considered prime suspects in the pathogenesis of both type 1 and 2 diabetes mellitus. In this concise review, current insights in macrophage heterogeneity and on the, as yet, underappreciated role of alternatively activated macrophages in insulin sensing and β-cell development/repair are reported. Further identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for diabetes mellitus.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3