Cholesterol and Hematopoietic Stem Cells: Inflammatory Mediators of Atherosclerosis

Author:

Lang Jennifer K.1,Cimato Thomas R.1

Affiliation:

1. Clinical and Translational Research Center, Department of Medicine/Cardiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA

Abstract

Summary Atherosclerosis causing heart attack and stroke is the leading cause of death in the modern world. Therapy for end-stage atherosclerotic disease using CD34+ hematopoietic cells has shown promise in human clinical trials, and the in vivo function of hematopoietic and progenitor cells in atherogenesis is becoming apparent. Inflammation plays a central role in the pathogenesis of atherosclerosis. Cholesterol is a modifiable risk factor in atherosclerosis, but in many patients cholesterol levels are only mildly elevated. Those with high cholesterol levels often have elevated circulating monocyte and neutrophil counts. How cholesterol affects inflammatory cell levels was not well understood. Recent findings have provided new insight into the interaction among hematopoietic stem cells, cholesterol, and atherosclerosis. In mice, high cholesterol levels or inactivation of cholesterol efflux transporters have multiple effects on hematopoietic stem cells (HSPCs), including promoting their mobilization into the bloodstream, increasing proliferation, and differentiating HSPCs to the inflammatory monocytes and neutrophils that participate in atherosclerosis. Increased levels of interleukin-23 (IL-23) stimulate IL-17 production, resulting in granulocyte colony-stimulating factor (G-CSF) secretion, which subsequently leads to HSPC release into the bloodstream. Collectively, these findings clearly link elevated cholesterol levels to increased circulating HSPC levels and differentiation to inflammatory cells that participate in atherosclerosis. Seminal questions remain to be answered to understand how cholesterol affects HSPC-mobilizing cytokines and the role they play in atherosclerosis. Translation of findings in animal models to human subjects may include HSPCs as new targets for therapy to prevent or regress atherosclerosis in patients

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3