Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog

Author:

Ohuchi Kazuki12,Funato Michinori2,Kato Zenichiro3,Seki Junko2,Kawase Chizuru2,Tamai Yuya2,Ono Yoko1,Nagahara Yuki1,Noda Yasuhiro1,Kameyama Tsubasa12,Ando Shiori12,Tsuruma Kazuhiro1,Shimazawa Masamitsu1,Hara Hideaki1,Kaneko Hideo2

Affiliation:

1. Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan

2. Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan

3. United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan

Abstract

Abstract Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons. This disease is mainly caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Currently, no effective treatment is available, and only symptomatic treatment can be provided. Our purpose in the present study was to establish a human SMA-derived induced pluripotent stem cell (SMA-iPSC) disease model and assay a therapeutic drug in preparation for the development of a novel treatment of SMA. We generated iPSCs from the skin fibroblasts of a patient with SMA and confirmed that they were pluripotent and undifferentiated. The neural differentiation of SMA-iPSCs shortened the dendrite and axon length and increased the apoptosis of the spinal motor neurons. In addition, we found activated astrocytes in differentiated SMA-iPSCs. Using this model, we confirmed that treatment with the thyrotropin-releasing hormone (TRH) analog, 5-oxo-l-prolyl-l-histidyl-l-prolinamide, which had marginal effects in clinical trials, increases the SMN protein level. This increase was mediated through the transcriptional activation of the SMN2 gene and inhibition of glycogen synthase kinase-3β activity. Finally, the TRH analog treatment resulted in dendrite and axon development of spinal motor neurons in differentiated SMA-iPSCs. These results suggest that this human in vitro disease model stimulates SMA pathology and reveal the potential efficacy of TRH analog treatment for SMA. Therefore, we can screen novel therapeutic drugs such as TRH for SMA easily and effectively using the human SMA-iPSC model. Significance Platelet-derived growth factor (PDGF) has recently been reported to produce the greatest increase in survival motor neuron protein levels by inhibiting glycogen synthase kinase (GSK)-3β; however, motor neurons lack PDGF receptors. A human in vitro spinal muscular atrophy-derived induced pluripotent stem cell model was established, which showed that the thyrotropin releasing hormone (TRH) analog promoted transcriptional activation of the SMN2 gene and inhibition of GSK-3β activity, resulting in the increase and stabilization of the SMN protein and axon elongation of spinal motor neurons. These results reveal the potential efficacy of TRH analog treatment for SMA.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3