Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing

Author:

Fang Shuo1,Xu Chen2,Zhang Yuntong3,Xue Chunyu1,Yang Chao1,Bi Hongda1,Qian Xijing4,Wu Minjuan5,Ji Kaihong56,Zhao Yunpeng56,Wang Yue56,Liu Houqi56,Xing Xin1

Affiliation:

1. Department of Plastic and Reconstruction, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China

2. Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China

3. Department of Emergency and Trauma, Shanghai Changhai Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China

4. Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, People's Republic of China

5. Research Center of Developmental Biology, Second Military Medical University, Shanghai, People's Republic of China

6. Translational Medicine Center, Second Military Medical University, Shanghai, People's Republic of China

Abstract

Abstract Excessive scar formation caused by myofibroblast aggregations is of great clinical importance during skin wound healing. Studies have shown that mesenchymal stem cells (MSCs) can promote skin regeneration, but whether MSCs contribute to scar formation remains undefined. We found that umbilical cord-derived MSCs (uMSCs) reduced scar formation and myofibroblast accumulation in a skin-defect mouse model. We found that these functions were mainly dependent on uMSC-derived exosomes (uMSC-Exos) and especially exosomal microRNAs. Through high-throughput RNA sequencing and functional analysis, we demonstrated that a group of uMSC-Exos enriched in specific microRNAs (miR-21, -23a, -125b, and -145) played key roles in suppressing myofibroblast formation by inhibiting the transforming growth factor-β2/SMAD2 pathway. Finally, using the strategy we established to block miRNAs inside the exosomes, we showed that these specific exosomal miRNAs were essential for the myofibroblast-suppressing and anti-scarring functions of uMSCs both in vitro and in vivo. Our study revealed a novel role of exosomal miRNAs in uMSC-mediated therapy, suggesting that the clinical application of uMSC-derived exosomes might represent a strategy to prevent scar formation during wound healing. Significance Exosomes have been identified as a new type of major paracrine factor released by umbilical cord-derived mesenchymal stem cells (uMSCs). They have been reported to be an important mediator of cell-to-cell communication. However, it is still unclear precisely which molecule or group of molecules carried within MSC-derived exosomes can mediate myofibroblast functions, especially in the process of wound repair. The present study explored the functional roles of uMSC-exosomal microRNAs in the process of myofibroblast formation, which can cause excessive scarring. This is an unreported function of uMSC exosomes. Also, for the first time, the uMSC-exosomal microRNAs were examined by high-throughput sequencing, with a group of specific microRNAs (miR-21, miR-23a, miR-125b, and miR-145) found to play key roles in suppressing myofibroblast formation by inhibiting excess α-smooth muscle actin and collagen deposition associated with activity of the transforming growth factor-β/SMAD2 signaling pathway.

Funder

National Natural Science Foundation of China

Foundation of Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3