Prediction of Disposition within 48-hours of Hospital Admission Using Patient Mobility Scores

Author:

Young Daniel L,Colantuoni Elizabeth,Friedman Lisa Aronson,Seltzer Jason,Daley Kelly,Ye Binqing,Brotman Daniel J,Hoyer Erik H

Abstract

Delayed hospital discharges for patients needing rehabilitation in a postacute setting can exacerbate hospital-acquired mobility loss, prolong functional recovery, and increase costs. Systematic measurement of patient mobility by nurses early during hospitalization has the potential to help identify which patients are likely to be discharged to a postacute care facility versus home. To test the predictive ability of this approach, a machine learning classification tree method was applied retrospectively to a diverse sample of hospitalized patients (N = 805) using training and validation sets. Compared with patients discharged to home, patients discharged to a postacute facility were older (median, 64 vs 56 years old) and had lower mobility scores at hospital admission (median, 32 vs 41). The final decision tree accurately classified the discharge location for 73% (95%CI:67%-78%) of patients. This study emphasizes the value of systematically measuring mobility in the hospital and provides a simple decision tree to facilitate early discharge planning.

Publisher

Wiley

Subject

Assessment and Diagnosis,Care Planning,Health Policy,Fundamentals and skills,General Medicine,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3