Demand forecasting using a hybrid model based on artificial neural networks: A study case on electrical products

Author:

Quiñones HectorORCID,Rubiano OscarORCID,Alfonso WilfredoORCID

Abstract

Purpose: This work aims to evaluate demand forecasting models to determine if using exogenous factors and machine learning techniques helps improve performance compared to univariate statistical models, allowing manufacturing companies to manage demand better.Design/methodology/approach: We implemented a multivariate Auto-Regressive Moving Average with eXogenous input (ARMAX) statistical model and a Neural Network-ARMAX (NN-ARMAX) hybrid model for forecasting. Later, we compared both to a standard univariate statistical model to forecast the demand for electrical products in a Colombian manufacturing company.Findings: The outcomes demonstrated that the NN-ARMAX model outperformed the other two. Indeed, demand management improved with the reduction of overstock and out-of-stock products.Research limitations/implications: The findings and conclusions in this work are limited to Colombian manufacturing companies that sell electrical products to the construction industry. Moreover, the experts from the company that provided us with the data also selected the external factors based on their own experiences, i.e., we might have disregarded potential factors.Practical implications: This work suggests that a model using neural networks and including exogenous variables can improve demand forecasting accuracy, promoting this approach in manufacturing companies dealing with demand planning issues.Originality/value: The findings in this work demonstrate the convenience of using the proposed hybrid model to improve demand forecasting accuracy and thus provide a reliable basis for its implementation in supply chain planning for the electrical/construction sector in Colombian manufacturing companies. 

Publisher

Omnia Publisher SL

Subject

Industrial and Manufacturing Engineering,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3