CO2 capture and conversion: A homemade experimental approach

Author:

Acuña-Girault AdalbertoORCID,Gómez del Campo-Rábago XimenaORCID,Contreras-Ruiz Marco AntonioORCID,Ibanez Jorge G.ORCID

Abstract

During the SARS-2-Covid pandemic our institution sought to continue the teaching and learning of experimental laboratories by designing, assembling, and delivering a microscale chemistry kit to the students´ homes. Thanks to this approach students were able to perform ~25 experiments during each one of the Fall 2020 and Spring 2021 semesters in an elective Electrochemistry and Corrosion course offered to Chemical Engineering undergraduates. In addition to performing traditional experiments, students were encouraged to design some of their own and have the entire group reproduce them. One of such student-designed experiments involved the capture of CO2 and its reduction with a readily available active metal (i.e., Al foil) in aqueous media to generate potentially useful products. The highly negative standard potential of Al is exploited for the reduction of lab-generated CO2, and the products are chemically tested. Al as a foil has been reported to be electrochemically inactive for carbon dioxide reduction. However, encouraged by an earlier report of the reduction of CO2 to CO, the Al surface is activated in the present experiment by removal of its natural oxide layer with a solution of CuCl2 produced in an electrochemical cell. This procedure enables Al to react with CO2 and yield useful chemistry. This experiment turned to be a discovery trip. The detailed procedure is discussed here, as well as the teaching methodology, grading scheme, and student outcomes.

Publisher

Omnia Publisher SL

Subject

Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3