Correlated storage assignment approach in warehouses: A systematic literature review

Author:

Islam Md. SaifulORCID,Uddin Md. KutubORCID

Abstract

Purpose: Correlation-based storage assignment approach has been intensively explored during the last three decades to improve the order picking efficiency. The purpose of this study is to present a comprehensive assessment of the literature about the state-of-the-art techniques used to solve correlated storage location assignment problems (CSLAP).Design/methodology/approach: A systematic literature review has been carried out based on content analysis to identify, select, analyze, and critically summarize all the studies available on CSLAP. This study begins with the selection of relevant keywords, and narrowing down the selected papers based on various criteria.Findings: Most correlated storage assignment problems are expressed as NP-hard integer programming models. The studies have revealed that CSLAP is evaluated with many approaches. The solution methods can be mainly categorized into heuristic approach, meta-heuristic approach, and data mining approach. With the advancement of computing power, researchers have taken up the challenge of solving more complex storage assignment problems. Furthermore, applications of the models developed are being tested on actual industry data to comprehend the efficiency of the models.Practical implications: The content of this article can be used as a guide to help practitioners and researchers to become adequately knowledgeable on CSLAP for their future work.Originality/value: Since there has been no recent state-of-the-art evaluation of CSLAP, this paper fills that need by systematizing and unifying recent work and identifying future research scopes. 

Publisher

Omnia Publisher SL

Subject

Industrial and Manufacturing Engineering,Strategy and Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3